Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Diretora do HEF tem artigo publicado em revista científica britânica Nature

Pesquisa visa identificar a estratégia que maximiza o desempenho antecipado de identificação do risco de morte por covid-19

576

Com o título Improving the performance of machine learning algorithms for health outcomes predictions in multicentric cohorts, a diretora administrativa do Hospital Estadual de Formosa (HEF), Ana Brito, foi reconhecida pela sua contribuição científica nos estudos da revista Nature. A revista é um veículo interdisciplinar britânico e foi classificada como a revista mais citada no mundo com um público on-line de 3 milhões ao mês.

A diretora faz parte da gestão do Instituto de Medicina, Estudos e Desenvolvimento – IMED, que além do HEF gere as unidades do Centro-Norte Goiano (HCN) e Trindade (Hetrin), unidades da Secretaria de Saúde de Goiás. “Um privilégio fazer parte dessa conquista. Agradeço a todos que fizeram parte desse projeto”, ressalta Ana Brito, diretora do HEF.

O trabalho desenvolvido na Nature foi apoiado pelo Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e pela rede Inteligência Artificial para Covid-19 no Brasil (IACOV-BR), um projeto que desenvolve algoritmos de inteligência artificial (machine learning) para antecipar o diagnóstico e o prognóstico de covid-19, com base em dados colhidos nas regiões brasileiras.

Os algoritmos de aprendizado de máquina estão sendo cada vez mais usados ​​em ambientes de saúde, mas sua generalização entre diferentes regiões ainda é desconhecida. Dessa forma, o estudo científico desenvolvido por Roberta Wichmann, Fernando Fernandes, Alexandre Chiavegatto Filho e IACOV-BR visa identificar a estratégia que maximiza o desempenho antecipado de identificação do risco de morte por covid-19 em diferentes regiões do Brasil.

A pesquisa descobriu que as diferentes estratégias para seleção de dados de treinamento foram capazes de prever a mortalidade por covid-19 com bom desempenho geral, utilizando apenas dados coletados rotineiramente. Nesse sentido, a melhor estratégia geral foi treinar e testar usando apenas os dados do hospital de referência, alcançando o maior desempenho antecipado em 11 dos 18 hospitais diferentes.

Aprendizado de máquina

O aprendizado de máquina (machine learning), de acordo com o Prof. Éliton Fontana (UFPR), é um termo geral utilizado para definir uma série de algoritmos que extraem informação a partir de um conjunto de dados, sem ser necessário definir um modelo matemático específico, a partir de um conjunto de dados de treinamento. Estes algoritmos buscam um padrão relacionando entradas e saídas, permitindo utilizar este padrão para realizar antecipações.

Assessoria de Comunicação
Yasmin Bernardes – yasmin@ecco.inf.br
62 99161-2649

Deixe uma resposta

Seu endereço de email não será publicado.

Este site utiliza o Akismet para reduzir spam. Saiba como seus dados em comentários são processados.